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a b s t r a c t

Organic electronic devices often consist of a sandwich structure containing several layers
of disordered organic semiconductors. In the modeling of such devices it is essential that
the charge transport across the organic heterojunctions is properly described. The presence
of energetic disorder and of strong gradients in both the charge density and the electric
field at the heterojunction complicates the use of continuum drift–diffusion approaches
to calculate the electrical current, because of the discrete positions of the sites involved
in the hopping transport of charges. We use the results of three-dimensional Monte Carlo
simulations to construct boundary conditions in a one-dimensional continuum drift–
diffusion approach that accurately describe the charge transport across the junction. The
important effects of both short- and long-range Coulomb interactions at the junction are
fully accounted for. The developed approach is expected to have a general validity.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Devices based on thin organic films such as organic
light-emitting diodes (OLEDs) are gaining in importance
within the optoelectronics industry [1,2]. Typically, these
devices consist of one or more layers of organic semicon-
ductors sandwiched between two metal electrodes. OLEDs
consisting of two layers were introduced by Tang et al.
[3,4]. State-of-the-art OLEDs consist of more than two lay-
ers, including emission layers and hole and electron trans-
port and injection layers [5,6]. In such devices a proper
understanding of the charge transport across the interface
between two organic semiconductors is crucial for accu-
rate modeling of the optoelectronic characteristics. A key
aspect is the energetic disorder present in organic semi-
conductors, which has a profound influence on the charge
transport.

Charge transport in disordered organic semiconductors
takes place through hopping of charge carriers between
states localized on molecules or polymer segments. This
gives rise to diffusion and, in the presence of an electric
. All rights reserved.
field, drift of charge carriers. Modeling of the current in
an organic device can then be done following a one-dimen-
sional drift–diffusion (1D-DD) approach, with a mobility l
and a diffusion coefficient D which is obtained from l by
using the generalized Einstein relation [7]. The dependence
of l on temperature, T, carrier density, n, and electric field,
F, may be obtained from three-dimensional (3D) studies of
hopping on a lattice of sites with a Gaussian energy disor-
der, performed by solving a master equation (ME) for the
occupational probabilities of the sites [8]. For single-carrier
single-layer devices, the accuracy of the 1D-DD approach
was demonstrated by the very good agreement with full
3D-ME results for such devices [9]. Recently, the results
of the 1D-DD approach were compared to those of 3D
Monte Carlo (MC) simulations of such devices in which
Coulomb interactions were fully included, with similarly
encouraging results for carrier concentrations up to 1%
[10]. The importance of the 1D-DD approach for the indus-
trial development of organic devices lies in the ease and
computational efficiency with which this approach can
be applied in device modeling and parameter extraction
[11].

It is also possible to model devices using the 1D master
Eq. (1D-ME) approach introduced by Coehoorn and Van
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Mensfoort [12]. In this approach the charges are localized
on a 1D chain of sites; hence, unlike the 1D-DD approach,
this is a non-continuum approach. Since the 1D-ME ap-
proach considers charge hopping explicitly, it treats inter-
faces in a natural way and has been successfully applied to
modeling experimental J–V characteristics of multi-layer
devices [13]. In the present paper we will separate the
treatment of interfaces from that of the bulk; since the
non-continuum 1D-ME and continuum 1D-DD approaches
yield similar results for the bulk [12], the choice of either
method does not significantly change the results. We will
mainly compare with the continuum 1D-DD method be-
cause of its widespread use.

For a multilayer device, the 1D-DD approach requires
the use of an appropriate boundary condition at the inter-
face between the different organic layers. We consider
here only the case of an energy barrier, but other effects
at the interface, such as different mobilities, can be treated
similarly. Staudigel et al. obtained a boundary condition by
considering the forward and backward hopping rates over
the interface in conjunction with a reduction of the energy
barrier by the local electric field [14]. Arkhipov et al. con-
sidered in addition the probability that a carrier that has
hopped over the interface ‘‘escapes’’ further into the organ-
ic layer behind the interface [15]. Several modifications
and applications of these semi-analytical approaches have
been proposed [16–19]. Houili et al. were the first to per-
form 3D-MC simulations of charge transport across an or-
ganic heterojunction, including Coulomb interactions
between the charges, and made a qualitative comparison
with the semi-analytical approaches [20]. However, a sys-
tematic way to improve the 1D-DD approach using the re-
sults of 3D-MC simulations is still lacking.

The goal of this paper is to use the results of 3D-MC
simulations to obtain general rules for improving the
description of the charge transport across organic hetero-
junctions by the 1D-DD approach. In order to reach that
goal we will apply both 3D-MC and 1D-DD modeling to a
typical single-carrier bilayer device. In the next section
we specify the structure of this device and discuss the
3D-MC modeling. In Section 3 we discuss the 1D-DD ap-
proach and start by proposing a simple boundary condition
at the organic heterojunction. By a comparison with the
3D-MC modeling we then improve the 1D-DD approach
in a step-by-step way. We introduce three improvements,
including the introduction of a new boundary condition.
We will show that when these improvements are used to-
gether, the 1D-DD approach can quantitatively reproduce
the 3D-MC results. We also consider interface roughness
and show that this has only a minor influence on the re-
sults. Section 4 contains a summary and conclusions.
Fig. 1. Energy diagram for the device to which we apply our modeling,
with a barrier D between the tops of the Gaussian hole densities of states
– indicated by the shading – of the two disordered organic semiconduc-
tors. The energies shown are hole energies. The position xI of the interface
is indicated.
2. Monte Carlo modeling of a single-carrier bilayer
device

We model the organic semiconductors in our device as
a cubic lattice of sites with a site density Nt and an intersite
distance a ¼ N�1=3

t . Without loss of generality, we will
consider hole transport in this work. The hole energy Ei

of each site is fixed and taken at random from a Gaussian
distribution with width (standard deviation) r. We assume
that there are no correlations in the hole energies, an
assumption that has been found to lead to an accurate
description of the current–voltage characteristics of hole-
only devices based on poly (p-penylene vinylene) and
polyfluorene [8]. Holes can hop from some site i to an
unoccupied neighboring site j with a Miller–Abrahams
[21] or Marcus [22] hopping rate. It has been shown that
there is no important difference in the charge transport
across interfaces for these two hopping rates [23], so we
consider here only the simpler Miller–Abrahams rate:

Wij ¼W0 exp �½DEþ jDEj�=2kBTð Þ; ð1Þ

where W0 is a material-dependent prefactor and kBT is the
thermal energy. The energy change DE involved in the hop
contains two contributions: (i) the difference in hole ener-
gies between sites j and i due to the disorder, and (ii) the
potential difference between these sites. The latter contri-
bution is due to the voltage applied over the device and the
electrostatic interaction with other holes as well as with
image charges in the electrodes.

The considered device structure and the involved
energy levels (neglecting the effect of the space charge)
are sketched in Fig. 1. At the left and right side of the
bilayer, two additional layers of sites represent the identi-
cally chosen electrodes. Hops to and from the electrode are
also assumed to take place with the rate given by Eq. (1).
Apart from an energy barrier D between the tops of each
Gaussian density of states (DOS) we take the two organic
materials to be identical, using typical parameters:
r ¼ 0:09 eV;W0 ¼ 105 s�1 and Nt ¼ 2� 1026 m�3 (corre-
sponding to a � 1:7 nm). At room temperature (295 K),
the mobility in the limit of zero carrier density and zero
field is then 1:6� 10�14 m2=V s. The relative dielectric per-
mittivity �r is taken to be 3. The total thickness of the
device is L ¼ 12a � 20:4 nm. This rather small thickness
ensures that the interface plays a large role in determining
the current density–voltage (J–V) characteristics. The
organic–organic interface is located between the fifth and
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the sixth layers of organic sites. We define the location of
the interface xI ¼ 5 1

2 a � 9:4 nm as the distance of the mid-
point of these layers to the left electrode. At the left side of
the device we take an injection barrier of 0.2 eV, defined as
the difference between the Fermi energy of the electrode
and the top of the Gaussian DOS of the left organic layer;
see Fig. 1.

The Monte Carlo (MC) device simulations proceed in the
same way as in Ref. [10]. Like in that work, we take into
account both the long-range space-charge effect as well
as the short-range effect of Coulomb interactions within
a radius Rc. For the results in this work we found Rc ¼ 8a
to be sufficient, i.e. an increase of Rc beyond this value does
not significantly change the results. In the lateral direction
we take 100� 100 sites. With this system size and the
parameters given above it is sufficient to consider only a
single disorder configuration. The error in the currents
shown in the plots below is then of the order of or smaller
than the symbol sizes. All simulations have been
performed at room temperature (T ¼ 295 K).

The J–V results obtained by applying the 3D-MC method
to our model device are shown by the black squares in
Fig. 2, for D ¼ 0:6 eV (main figure) and D ¼ 0 (inset). For
comparison, the current density obtained when neglecting
short-range Coulomb interactions is shown by the gray cir-
cles. We observe that these interactions strongly affect the
current when an internal interface is present, but not in the
absence of the interface (the black squares and gray circles
in the inset of Fig. 2 coincide). We consider these results as
a benchmark. Our goal is to replicate them using a compu-
tationally much faster continuum one-dimensional drift–
diffusion approach. Although we consider a specific model
device, the conclusions that we will reach have a general
validity.
Fig. 2. Current density–voltage characteristics for the device shown in
Fig. 1 with D ¼ 0:6 eV. Black squares: 3D Monte Carlo (3D-MC) results.
Black triangles: 3D-MC results including surface roughness. Gray circles:
3D-MC results without short-range Coulomb interactions. Purple dash-
dotted line: 1D drift–diffusion (1D-DD) results assuming thermal equi-
librium across the interface. Blue dotted line: 1D-DD results with effect
(1) (deviation from equilibrium) included. Red dashed line: 1D-DD results
with effects (1) and (2) (non-continuous charge distribution) included.
Green solid line: 1D-DD results with effects (1), (2) and (3) (short-range
Coulomb interactions) included. Inset: same for D ¼ 0, i.e. no internal
interface. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
3. One-dimensional drift–diffusion approach

In the continuum 1D-DD approach the carrier density
nðxÞ and electric field FðxÞ in the device are determined
as a function of the distance x from the left electrode by
solving the drift–diffusion equation [7]:

J ¼ elðxÞnðxÞFðxÞ � eDðxÞdn
dx
¼ elðxÞnðxÞ FðxÞ � 1

e
dEF

dx

� �
:

ð2Þ

Here, e is the elementary charge unit and EF the Fermi le-
vel, which follows from nðxÞ through the Gauss–Fermi inte-
gral. The second equality follows from the generalized
Einstein relation [24]. The mobility depends on the position
x through its dependence on the local carrier density nðxÞ
and the local electric field FðxÞ. These dependencies, as well
as the dependence on temperature T, may be obtained from
bulk 3D simulations with a homogeneous carrier density
and electric field [8]. The carrier densities at the boundaries
of the device are obtained by assuming thermal equilibrium
between these boundaries and the electrodes, taking into
account the potential change due to the field at these
boundaries over a distance a. It is not necessary to take into
account the interaction of individual charges with their
own images, because of the fairly low injection barrier
[9]. The 1D-DD approach is accurate for the basic case of
the device with no internal interface (D ¼ 0), as may be
seen in the inset of Fig. 2 (dash-dotted line).

When modeling the J–V characteristics for the system
with an organic–organic interface, a boundary condition
should be imposed to connect the carrier density just be-
hind the interface at x ¼ xI þ a=2;nR, to the carrier density
just before it at x ¼ xI � a=2;nL. The dash-dotted line in
Fig. 2 shows the J–V curve obtained when thermal equilib-
rium, true only for J ¼ 0, is assumed at the interface, i.e.
assuming

EF;RðnRÞ ¼ EF;LðnLÞ þ eaFðxIÞ; ð3Þ

where FðxIÞ is the electric field at the interface. The depen-
dence of EF;RðnRÞ and EF;LðnLÞ on the densities nR and nL is
obtained through the Gauss–Fermi integrals, in which the
energy barrier D should be accounted for. Fig. 2 shows that
this approach gives rise to a too high current density.

There are three separate physical effects that need to be
taken into account in order to obtain an appropriate inter-
face boundary condition in the 1D-DD approach:

(1) Deviation from equilibrium: the assumption of ther-
mal equilibrium made in Eq. (3) is not correct; we
will show how we can take the effect of the actual
non-equilibrium situation into account.

(2) Non-continuous charge distribution: in the 1D-DD
model the carrier density profile nðxÞ is continuous,
while in the model device all carriers are located in
two-dimensional layers of sites. The effect of this
discreteness is especially important in the last layer
of sites before the interface, where a large charge
density build-up occurs.

(3) Short-range Coulomb interactions: the effective field
experienced by a charge attempting to cross the



Fig. 3. Charge–carrier density (top) and electric field (bottom) as a
function of position in the device shown in Fig. 1, with D ¼ 0:6 eV and an
applied voltage of 3 V. See Fig. 2 for a description of the curves and
symbols. The vertical line indicates the position of the interface xI .
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interface is lower than one would expect based
purely on considering the space charge, since the
charge does not interact with itself and other
charges will be pushed away by the Coulomb repul-
sion [20].

The results of including these effects are shown in Fig. 2.
Including effect (1) leads to the blue dotted line, while
including effects (1) and (2) leads to the red dashed line.
We note that this result coincides with the 3D-MC simula-
tions without short-range Coulomb interactions (circles).
Finally, including all three effects (green solid line) leads
to an accurate description of the 3D-MC results in which
all effects of Coulomb interactions are included. We note
that the 1D-ME method includes effects (1) and (2) in a
natural way, since the discreteness of the 3D-MC model
is included in this approach. Without any further correc-
tions it provides a fairly good fit (up to about a factor 2)
of the 3D-MC results without short-range Coulomb inter-
actions (results not shown).

Below, the methods used to include effects (1)–(3) in
the continuum 1D-DD approach are discussed in detail.
In the last subsection we will consider a specific case of
interface roughness. This leads to a slight change of the
J–V characteristics (see the triangles in Fig. 2), but this
change is smaller than that due to the above effects.

3.1. Deviation from equilibrium

To obtain a more realistic boundary condition than Eq.
(3), we must describe the charge transport over the inter-
face in a manner similar to the bulk by defining a field, a
carrier mobility, and a carrier density at the interface.
The generalized Einstein relation tells us that a gradient
in the Fermi energy has the same effect as an electric field;
see Eq. (2). This leads us to the consideration of an effective
field

Feff ¼ FðxIÞ þ ðEF;LðnLÞ � EF;RðnRÞÞ=ea; ð4Þ

across the interface. Regarding the mobility and the carrier
density we propose taking the geometric average of these
quantities at both sides of the interface, leading to the
following form of the drift–diffusion equation at the
interface:

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðnL; FeffÞlðnR; FeffÞnLnR

p
Feff ¼ J: ð5Þ

We note that, like in the case of Eq. (3), the energy
barrier D comes into play through the Gauss–Fermi inte-
grals, providing the dependence of the Fermi energies
EF;LðnLÞ and EF;RðnRÞ on nL and nR. We show the results of
applying the 1D-DD approach using this boundary condi-
tion to our model device in Fig. 2 (dotted line). We see that
there is some improvement, but that the agreement is still
far from satisfactory.

3.2. Non-continuous carrier distribution

In the top half of Fig. 3 we plot the carrier density
distribution in the model device at an applied voltage of
3 V, obtained with 3D-MC modeling (symbols) and the
1D-DD approach with the improved boundary condition
discussed above (dotted line). An obvious difference is that
in the 1D-DD approach the distribution nðxÞ is a continu-
ous function of the position x, whereas in the 3D-MC
modeling charges can only be present at the discrete
positions of the layers of sites of the cubic lattice. This
affects the field profile FðxÞ, shown in the bottom half of
Fig. 3: in the 1D-DD approach the field increases continu-
ously, while in the 3D-MC modeling it increases discontin-
uously at the layers of the lattice. This difference is not
important in the bulk of the organic layers, because the
gradients in nðxÞ and FðxÞ are small far from the interface,
but it is very significant at the layer just before the
interface, where a large build-up of carriers occurs. We
note that in a realistic disordered organic semiconductor
the sites are not ordered on a lattice, but for a sharp
enough interface non-continuum effects at least qualita-
tively similar to those described here are nonetheless
expected to occur.

To account for this effect in the 1D-DD approach, we
eliminate the unphysical contribution to the space charge
of the carrier distribution within a distance a=2 of the last
layer of sites before the interface. Instead, we add a sheet
charge with surface charge density eanL at this layer, which
causes a jump in the field equal to eanL=�0�r. The field pro-
file resulting from the 1D-DD approach with this improve-
ment is shown by the dashed line in the bottom half of
Fig. 3. We note that the field stops increasing at a distance
a=2 before the last layer of sites of the left semiconductor,
since we do not consider the contribution to the space
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charge there, and then jumps at this layer of sites. This field
profile matches the 3D-MC results without short-range
Coulomb interactions (circles) quite well, and the same
holds for the corresponding density profile. The description
of the corresponding J–V characteristics is also excellent;
see the dashed line and the circles in Fig. 2.
3.3. Short-range Coulomb interactions

The 3D-MC results displayed in Fig. 2 show that short-
range Coulomb interactions play an important role. One
might surmise that due to the large carrier density at the
interface the charge–carrier mobility is affected by the
short-range interactions, and that this should be accounted
for in order to obtain an accurate J–V curve. However, we
found that, due to the large competition between the drift
and diffusion components of the current near the interface,
the precise value of the mobility close to the interface is
not so relevant for the final current density.

Instead, we find that short-range Coulomb interactions
are relevant as a result of the effect of the surface charge
just before the interface on the field across the interface.
This was first noted by Houili et al. [20]. Up to now we
have considered the surface charge at the layer of sites
before the interface as laterally homogeneous, which gives
an inaccurate description of hops to and from this layer for
two reasons: (i) the homogeneous surface charge incor-
rectly contains a contribution due to the very charge that
is hopping (‘‘self-interaction’’), (ii) the homogeneous
surface charge incorrectly neglects the fact that charges
around the one that is hopping will have been pushed
away (‘‘Coulomb hole’’). As a result, the electric field felt
by a carrier hopping over the interface is strongly reduced.

To quantify this reduction of the field, we performed
equilibrium MC simulations on a collection of holes in a
2D square lattice, which represents a layer of sites just
before the interface. We can then determine the potential
difference due to the Coulomb interactions for a charge
attempting to hop out of this layer and compare this to
the case of a homogeneous surface charge. This procedure
accounts for the effects of both the self-interaction and the
Coulomb hole. By varying the carrier density n in this layer,
the disorder strength r, and the characteristic energy scale
of the Coulomb interactions U � e2=4pa�0�r, we have
found that the reduction is well described by multiplying
the homogeneous surface charge in this layer by a factor
1� C, with C given by

C ¼ 0:462þ0:538expð�5:5nL=NtÞ½1�expð�0:4ðU=kBTÞ0:65Þ�:
ð6Þ

Fractions C=2 of this surface charge are placed in the
two adjacent layers of sites to guarantee charge conserva-
tion. The first term in Eq. (6) corrects for the self-
interaction and the second for the Coulomb hole. We found
that this formula applies for U=rJ 2 (for our model device
we have U=r ¼ 3:1).

In the 1D-DD approach we apply this procedure only to
the last layer of sites before the interface, for which the
correction is the most important. This means that the sheet
charge with surface charge density eanL obtained in the
previous subsection is multiplied by a factor 1� C, while
fractions C=2 of this sheet charge are placed in the adjacent
layers. The resulting field and density profiles (solid lines
in Fig. 3) show excellent agreement with the 3D-MC results
with all Coulomb interactions included (squares). The
same applies to the J–V characteristics; see Fig. 2.
3.4. Interface roughness

With vacuum deposition of organic molecules it is now-
adays possible to define layer thicknesses with nanometer
precision, i.e. at the scale of the size of a molecule [2]. How-
ever, interface roughness at this scale will still occur, while
the methods described above apply to a sharp interface. In
order to investigate the effects of interface roughness at a
scale of one layer of sites we consider a checkered
interface, where in the layer before the interface sites
corresponding to both organic semiconductors are ar-
ranged in a checkerboard pattern. The J–V characteristics
resulting from 3D-MC simulations of the modified device
are shown by the black triangles in Fig. 2. Although the
current is somewhat affected by the interface roughness,
it is clear that the three other effects considered above
are much more significant. Hence, it is useful to consider
the effects discussed in the present work and to apply
the developed techniques to obtain an improved modeling
by the drift–diffusion approach also to cases for which
interface roughness is present.
4. Summary and conclusions

Organic heterojunctions are key ingredients of modern
multilayer organic devices and it is essential to develop
fast and accurate modeling tools for the charge transport
across such junctions. Widely used drift–diffusion
approaches to charge transport run into difficulties close
to such junctions because the large variations in the
charge–carrier density and electric field at the scale of
the distance between the localized states involved in the
hopping transport prevent a straightforward continuum
description. Monte Carlo simulations of the charge trans-
port naturally account for the discreteness in the positions
of the localized states and can therefore properly describe
the transport across organic heterojunctions. Such simula-
tions are computationally very intensive, but can be used
as benchmark for improved drift–diffusion approaches,
which can then be used as fast and easy-to-use modeling
tools in the industrial development of organic devices.

In this paper the following drift–diffusion approach was
developed and shown to match Monte Carlo results, even
for a rough interface. (i) Charge transport within the bulk
of the organic layers is described as usual by the drift–dif-
fusion equation, Eq. (2). (ii) The boundary condition at the
interface, linking the carrier densities nL and nR at the left
and right side of the barrier, is given by Eq. (5). This bound-
ary condition accounts for the deviation from equilibrium
across the interface due the presence of a current. (iii)
The unphysical space charge within a distance a=2 of the
last layer of sites before the barrier, where the carrier den-
sity is extremely high, is replaced by a sheet charge at the
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location of this layer. This gives rise to a field jump at this
layer. (iv) This sheet charge is multiplied by a factor 1� C,
where C is given by Eq. (6), accounting for the self-interac-
tion of the hopping charge and for the Coulomb hole of re-
duced charge density around this charge, while fractions
C=2 of this sheet charge are moved to the adjacent layers
of sites. The combination of (iii) and (iv) leads to three field
jumps: one at the position of the last layer of sites before
the barrier, with a size ð1� CÞeanL=�0�r, and two at dis-
tances �a from this layer, with a size CeanL=2�0�r.

Although the study in this paper has been performed for
a specific model device, we expect that the conclusions
reached and the approach followed have a general validity
for charge transport across organic heterojunctions. We
note that a special role is played by the distance a in the
approach. In our study it is the lattice constant of the sim-
ple cubic lattice we have considered in our Monte Carlo
simulations. The finite value of a expresses the positional
discreteness of the system of hopping sites. It is this dis-
creteness and not the specific lattice that is the essential
complication in continuum drift–diffusion approaches.
We therefore expect that our approach can also be applied
to realistic organic semiconductors, having a spatially
more random distribution of hopping sites. We propose
that in that case a should be treated as an effective param-
eter, which is expected to be of the order of the typical dis-
tance between the hopping sites.
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